Decentralized Systems Engineering

CS-438 — Fall 2024

DEDI S Pierluca Borso-Tan and Bryan Ford E P F L

Credits: P. Tennage, C. Basescu, et al.

Decentralized Communication

Gossip

(Homework 1)

Recap: Improved Gossiping

What can we learn from people ?
Rumor mongering

On receilving message M:

pick random neighbor, send M
neighbor replies: new rumor?

1f new: repeat

else: flip coin()
1f head: repeat ‘
else: stop S

What's good about this ? Which issues do you foresee ?

Recap: Improved Gossiping (cont'd)

How can make sure messages reach every node?
Anti-entropy

Periodically (when timer fires):

pick random neighbor
send “anything new?”
reduce entropy (ihave/sendme)

What's good about this ? What's limiting ?

This (slowly) ensures complete dissemination, at O(n) per period

Case study: Twitter

Gossip relies on message-IDs.
How do you pick a good Message-ID in a (centralized) distributed setting ?

e For most applications, they need to be sortable
e Globally unique, even in distributed settings

- Snowflake IDs
[0 (1 bit) | timestamp (41 bits) | machine ID (10 bits) | counter (12 bits)]

Announced 2010, adopted by Instagram (2012), Discord (2015)

Case study: Mastodon

Snowflake IDs (64 bits)

[0 (1 bit) | timestamp (41 bits) | machine ID (10 bits) | counter (12 bits)]

What about a decentralized setting?
e Would this work?

e \What else do we need to do ?

Case study: Mastodon

‘created _at': datetime.datetime(2022, 11, 13, 0, 52, 37, tzinfo=tzutc()),

'id': 109347716491680514, Local Snowflake ID

. message data ...

‘uri': 'https://example.com/@user/109347716173491502° Original URI w/ Snowflake ID

}

Gossip Quality Measures

Is your gossip any good ?

How can you tell ? Broadcast Rumor-
Mongering
. Early: low
e Residue Late: high
e Traffic total traffic

number of nodes

® tu,4 . tos average & 95 percentile time
for rumor - node

® t;,s time for rumor - last node

What are the parameters & trade-offs ?

Rumor-mongering (fast, randomized):
e Feedback vs. blind

e Randomized vs. counter

e Constant: probability / counter

Anti-entropy (slow, complete):
e Periodicity

How can we “delete” rumors ?

Death Certificates

When is the rumor deleted ?
How does this affect propagation ?
Why can rumors resurrect ?
When can we delete the death certificate ?
What if a server is offline ?
o “Dormant”’ death certificates
o Phased deletion

10

A few applications of Gossip

e Metadata propagation
e Failure detection

e (Group membership

Example
e Apache Cassandra
e CockroachDB

e Consul

11

Communicating with (many, unknown) peers

You now understand:

e How do we reach unknown peers ?
e How do we eventually reach every peer ?
e How can we communicate reliably ?
o Are they online ?
o Is the network « stable » ?
e How do they find out about us / our node ?

12

Decentralized Search

Finding Data

(Homework 2)

Finding data among (many, unknown) peers

e Same machine
build a local index, and/or Linux locate, find, grep commands

e Local networking

e Global networking, centralized trust
crawling, processing, indexing, then using the (distributed) index...
Google ©

e Decentralized
?7?? - today’s and next week’s lecture

Finding data among (many, unknown) peers

Many open questions:

Where can the data be found ?
Does the data even exist ?
Who knows about it ?

How do we retrieve it ?

Most importantly:
e \What can we assume about the peers and the network ?

15

Distributed search algorithms

Two big families:

e Unstructured search
o Robust to churn, instantly adaptive

- Today’s lecture

e Structured search
o Much more efficient, many more problems

- Next week’s lecture

Building Gnutella

Context (1999 — 2008):

e No Spotify, no Netflix

e No BitTorrent

e People still want entertainment

Specifications:
e Search any file, anywhere
e Metadata can be searched

e Complex queries are allowed ((A or B) and C)
e.g. artist is “Bob Marley” and title contains “birds”

Jd Barbie Girl

Standard, basic algorithm

What can we learn from people ?
Flooding

e (Gossip searches (query)
e Direct response (query hit)

Which issues do you foresee ?

e Unpredictable delays

e Connectivity

e Efficiency : all nodes see & process all searches

Jd Barbie Girl

=

Optimizations

Can we not flood everyone ?
Expanding-ring search

e Limited flooding (TTL)

e Increasing TTL on retry A C
g

What are the trade-offs ? D

e Higher latency © Ken

e Asymptotically worse O(nlogn)

e Pragmatically, it works !

Optimizations

Can we make it more efficient ?
BubbleStorm

e Birthday paradox
e Data search & storage
random “meet in the middle”

Key considerations:

e Asymptotically efficient 0(v/n)
e “Mostly unstructured”

e Tunable parameters

e Extremely robust / resilient

Next steps

Reading on Moodle:

e (Mandatory) BubbleStorm: Resilient, Probabilistic, & Exhaustive P2P Search

- Use Friday’s session to ask questions

21

	Search (hour 1)
	Slide 1: Decentralized Systems Engineering
	Slide 2: Decentralized Communication
	Slide 3: Recap: Improved Gossiping
	Slide 4: Recap: Improved Gossiping (cont’d)
	Slide 5: Case study: Twitter
	Slide 6: Case study: Mastodon
	Slide 7: Case study: Mastodon
	Slide 8: Gossip Quality Measures
	Slide 9: What are the parameters & trade-offs ?
	Slide 10: How can we “delete” rumors ?
	Slide 11: A few applications of Gossip
	Slide 12: Communicating with (many, unknown) peers
	Slide 13: Decentralized Search
	Slide 14: Finding data among (many, unknown) peers
	Slide 15: Finding data among (many, unknown) peers
	Slide 16: Distributed search algorithms
	Slide 17: Building Gnutella
	Slide 18: Standard, basic algorithm
	Slide 19: Optimizations
	Slide 20: Optimizations
	Slide 21: Next steps

