
Decentralized Systems Engineering

CS-438 – Fall 2024

Pierluca Borsò-Tan and Bryan Ford

Credits: P. Tennage, C. Basescu, et al.

Decentralized Communication

Gossip

(Homework 1)

Recap: Improved Gossiping
A B

CD

E

F

What can we learn from people ?

Rumor mongering

On receiving message M:

pick random neighbor, send M

neighbor replies: new rumor?

if new: repeat

else:

What’s good about this ? Which issues do you foresee ?

flip_coin()

if head: repeat

else: stop

Recap: Improved Gossiping (cont’d)

How can make sure messages reach every node?

Anti-entropy

Periodically (when timer fires):

pick random neighbor

send “anything new?”

reduce entropy (ihave/sendme)

What’s good about this ? What’s limiting ?

This (slowly) ensures complete dissemination, at 𝑂 𝑛 per period

Case study: Twitter

Gossip relies on message-IDs.

How do you pick a good Message-ID in a (centralized) distributed setting ?

● For most applications, they need to be sortable

● Globally unique, even in distributed settings

→ Snowflake IDs

[0 (1 bit) | timestamp (41 bits) | machine ID (10 bits) | counter (12 bits)]

Announced 2010, adopted by Instagram (2012), Discord (2015)

Case study: Mastodon

Snowflake IDs (64 bits)

[0 (1 bit) | timestamp (41 bits) | machine ID (10 bits) | counter (12 bits)]

What about a decentralized setting?

● Would this work?

● What else do we need to do ?

Case study: Mastodon

{

'created_at': datetime.datetime(2022, 11, 13, 0, 52, 37, tzinfo=tzutc()),

'id': 109347716491680514,

... message data ...

'uri': 'https://example.com/@user/109347716173491502’

}

Local Snowflake ID

Original URI w/ Snowflake ID

Gossip Quality Measures

Is your gossip any good ?

How can you tell ?

● Residue

● Traffic
𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

● 𝑡𝑎𝑣𝑔 , 𝑡95 average & 95th percentile time

for rumor → node

● 𝑡𝑙𝑎𝑠𝑡 time for rumor → last node

Broadcast
Rumor-

Mongering

Anti-

Entropy

Early: low

Late: high

Early: high

Late: low

What are the parameters & trade-offs ?

Rumor-mongering (fast, randomized):

● Feedback vs. blind

● Randomized vs. counter

● Constant: probability / counter

Anti-entropy (slow, complete):

● Periodicity

How can we “delete” rumors ?

Death Certificates

● When is the rumor deleted ?

● How does this affect propagation ?

● Why can rumors resurrect ?

● When can we delete the death certificate ?

● What if a server is offline ?

○ “Dormant” death certificates

○ Phased deletion

10

A few applications of Gossip

● Metadata propagation

● Failure detection

● Group membership

Example

● Apache Cassandra

● CockroachDB

● Consul

11

Communicating with (many, unknown) peers

You now understand:

● How do we reach unknown peers ?

● How do we eventually reach every peer ?

● How can we communicate reliably ?

○ Are they online ?

○ Is the network « stable » ?

● How do they find out about us / our node ?

12

Decentralized Search

Finding Data

(Homework 2)

Finding data among (many, unknown) peers

● Same machine

build a local index, and/or Linux locate, find, grep commands

● Local networking

● Global networking, centralized trust

crawling, processing, indexing, then using the (distributed) index…

Google ☺

● Decentralized

??? → today’s and next week’s lecture

Finding data among (many, unknown) peers

Many open questions:

● Where can the data be found ?

● Does the data even exist ?

● Who knows about it ?

● How do we retrieve it ?

Most importantly:

● What can we assume about the peers and the network ?

15

Distributed search algorithms

Two big families:

● Unstructured search

○ Robust to churn, instantly adaptive

→ Today’s lecture

● Structured search

○ Much more efficient, many more problems

→ Next week’s lecture

Building Gnutella

Context (1999 – 2008):

● No Spotify, no Netflix

● No BitTorrent

● People still want entertainment

Specifications:

● Search any file, anywhere

● Metadata can be searched

● Complex queries are allowed ((A or B) and C)

e.g. artist is “Bob Marley” and title contains “birds”

Standard, basic algorithm

What can we learn from people ?

Flooding

● Gossip searches (query)

● Direct response (query hit)

Which issues do you foresee ?

E

B D

FCA

Ken

Barbie Girl

● Unpredictable delays

● Connectivity

● Efficiency : all nodes see & process all searches

Optimizations

Can we not flood everyone ?

Expanding-ring search

● Limited flooding (TTL)

● Increasing TTL on retry

What are the trade-offs ?

● Higher latency

● Asymptotically worse 𝑂 𝑛 log𝑛

● Pragmatically, it works !

E

B D

CA

Ken

Barbie Girl

Optimizations

Can we make it more efficient ?

BubbleStorm

● Birthday paradox

● Data search & storage

random “meet in the middle”

Key considerations:

● Asymptotically efficient 𝑂 𝑛

● “Mostly unstructured”

● Tunable parameters

● Extremely robust / resilient

Ken

Barbie Girl

Next steps

Reading on Moodle:

● (Mandatory) BubbleStorm: Resilient, Probabilistic, & Exhaustive P2P Search

→ Use Friday’s session to ask questions

21

	Search (hour 1)
	Slide 1: Decentralized Systems Engineering
	Slide 2: Decentralized Communication
	Slide 3: Recap: Improved Gossiping
	Slide 4: Recap: Improved Gossiping (cont’d)
	Slide 5: Case study: Twitter
	Slide 6: Case study: Mastodon
	Slide 7: Case study: Mastodon
	Slide 8: Gossip Quality Measures
	Slide 9: What are the parameters & trade-offs ?
	Slide 10: How can we “delete” rumors ?
	Slide 11: A few applications of Gossip
	Slide 12: Communicating with (many, unknown) peers
	Slide 13: Decentralized Search
	Slide 14: Finding data among (many, unknown) peers
	Slide 15: Finding data among (many, unknown) peers
	Slide 16: Distributed search algorithms
	Slide 17: Building Gnutella
	Slide 18: Standard, basic algorithm
	Slide 19: Optimizations
	Slide 20: Optimizations
	Slide 21: Next steps

